JMetalPy: a Python Framework for Multi-Objective Optimization with Metaheuristics

Izaskun Oregi and Javier Del Ser, both members of the JRL, have contributed to the development of JMetalPy, a Python framework for multi-objective optimization with metaheuristics. Concretely, they have developed a new multi-objective optimization software platform aiming not only at replicating the former one in a different programming language, but also at taking advantage of the full feature set of Python, including its facilities for fast prototyping and the large amount of available libraries for data processing, data analysis, data visualization, and high-performance computing. As a result, jMetalPy provides an environment for solving multi-objective optimization problems focused not only on traditional metaheuristics, but also on techniques supporting preference articulation and dynamic problems, along with a rich set of features related to the automatic generation of statistical data from the results generated, as well as the real-time and interactive visualization of the Pareto front approximations produced by the algorithms. jMetalPy offers additionally support for parallel computing in multicore and cluster systems. We include some use cases to explore the main features of jMetalPy and to illustrate how to work with it.

More info:

Share this post

Leave a Reply

Your email address will not be published. Required fields are marked *